Copied to
clipboard

G = C2xC23.23D4order 128 = 27

Direct product of C2 and C23.23D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC23.23D4, C24.138D4, C25.14C22, C24.532C23, C23.169C24, (C24xC4):1C2, C24:8(C2xC4), (C22xC4):51D4, (C22xD4):19C4, C23:4(C22xC4), (D4xC23).5C2, C23:6(C22:C4), (C23xC4):55C22, C23.598(C2xD4), C22.107(C4xD4), C22.60(C23xC4), C22.67(C22xD4), C22.107C22wrC2, C23.358(C4oD4), (C22xC4).447C23, C22.156(C4:D4), C2.C42:59C22, (C22xD4).462C22, C22.98(C22.D4), C2.6(C2xC4xD4), (C2xC4):20(C2xD4), (C2xD4):36(C2xC4), (C2xC4):5(C22xC4), C2.2(C2xC4:D4), (C22xC4):16(C2xC4), C2.3(C2xC22wrC2), C22:2(C2xC22:C4), (C22xC22:C4):4C2, C22.61(C2xC4oD4), C2.8(C22xC22:C4), (C2xC22:C4):69C22, C2.3(C2xC22.D4), (C2xC2.C42):16C2, SmallGroup(128,1019)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2xC23.23D4
C1C2C22C23C24C25C24xC4 — C2xC23.23D4
C1C22 — C2xC23.23D4
C1C24 — C2xC23.23D4
C1C23 — C2xC23.23D4

Generators and relations for C2xC23.23D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=de-1 >

Subgroups: 1452 in 788 conjugacy classes, 236 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2xC4, C2xC4, D4, C23, C23, C23, C22:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C24, C2.C42, C2xC22:C4, C2xC22:C4, C23xC4, C23xC4, C23xC4, C22xD4, C22xD4, C25, C2xC2.C42, C23.23D4, C22xC22:C4, C22xC22:C4, C24xC4, D4xC23, C2xC23.23D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C4oD4, C24, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C22.D4, C23xC4, C22xD4, C2xC4oD4, C23.23D4, C22xC22:C4, C2xC4xD4, C2xC22wrC2, C2xC4:D4, C2xC22.D4, C2xC23.23D4

Smallest permutation representation of C2xC23.23D4
On 64 points
Generators in S64
(1 60)(2 57)(3 58)(4 59)(5 50)(6 51)(7 52)(8 49)(9 43)(10 44)(11 41)(12 42)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)(29 47)(30 48)(31 45)(32 46)(33 64)(34 61)(35 62)(36 63)(37 53)(38 54)(39 55)(40 56)
(1 29)(2 30)(3 31)(4 32)(5 23)(6 24)(7 21)(8 22)(9 38)(10 39)(11 40)(12 37)(13 52)(14 49)(15 50)(16 51)(17 62)(18 63)(19 64)(20 61)(25 35)(26 36)(27 33)(28 34)(41 56)(42 53)(43 54)(44 55)(45 58)(46 59)(47 60)(48 57)
(1 23)(2 24)(3 21)(4 22)(5 29)(6 30)(7 31)(8 32)(9 64)(10 61)(11 62)(12 63)(13 58)(14 59)(15 60)(16 57)(17 40)(18 37)(19 38)(20 39)(25 56)(26 53)(27 54)(28 55)(33 43)(34 44)(35 41)(36 42)(45 52)(46 49)(47 50)(48 51)
(1 39)(2 40)(3 37)(4 38)(5 61)(6 62)(7 63)(8 64)(9 32)(10 29)(11 30)(12 31)(13 26)(14 27)(15 28)(16 25)(17 24)(18 21)(19 22)(20 23)(33 49)(34 50)(35 51)(36 52)(41 48)(42 45)(43 46)(44 47)(53 58)(54 59)(55 60)(56 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 28)(2 14)(3 26)(4 16)(5 34)(6 49)(7 36)(8 51)(9 41)(10 47)(11 43)(12 45)(13 37)(15 39)(17 54)(18 58)(19 56)(20 60)(21 53)(22 57)(23 55)(24 59)(25 38)(27 40)(29 44)(30 46)(31 42)(32 48)(33 62)(35 64)(50 61)(52 63)

G:=sub<Sym(64)| (1,60)(2,57)(3,58)(4,59)(5,50)(6,51)(7,52)(8,49)(9,43)(10,44)(11,41)(12,42)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(29,47)(30,48)(31,45)(32,46)(33,64)(34,61)(35,62)(36,63)(37,53)(38,54)(39,55)(40,56), (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,38)(10,39)(11,40)(12,37)(13,52)(14,49)(15,50)(16,51)(17,62)(18,63)(19,64)(20,61)(25,35)(26,36)(27,33)(28,34)(41,56)(42,53)(43,54)(44,55)(45,58)(46,59)(47,60)(48,57), (1,23)(2,24)(3,21)(4,22)(5,29)(6,30)(7,31)(8,32)(9,64)(10,61)(11,62)(12,63)(13,58)(14,59)(15,60)(16,57)(17,40)(18,37)(19,38)(20,39)(25,56)(26,53)(27,54)(28,55)(33,43)(34,44)(35,41)(36,42)(45,52)(46,49)(47,50)(48,51), (1,39)(2,40)(3,37)(4,38)(5,61)(6,62)(7,63)(8,64)(9,32)(10,29)(11,30)(12,31)(13,26)(14,27)(15,28)(16,25)(17,24)(18,21)(19,22)(20,23)(33,49)(34,50)(35,51)(36,52)(41,48)(42,45)(43,46)(44,47)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28)(2,14)(3,26)(4,16)(5,34)(6,49)(7,36)(8,51)(9,41)(10,47)(11,43)(12,45)(13,37)(15,39)(17,54)(18,58)(19,56)(20,60)(21,53)(22,57)(23,55)(24,59)(25,38)(27,40)(29,44)(30,46)(31,42)(32,48)(33,62)(35,64)(50,61)(52,63)>;

G:=Group( (1,60)(2,57)(3,58)(4,59)(5,50)(6,51)(7,52)(8,49)(9,43)(10,44)(11,41)(12,42)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28)(29,47)(30,48)(31,45)(32,46)(33,64)(34,61)(35,62)(36,63)(37,53)(38,54)(39,55)(40,56), (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,38)(10,39)(11,40)(12,37)(13,52)(14,49)(15,50)(16,51)(17,62)(18,63)(19,64)(20,61)(25,35)(26,36)(27,33)(28,34)(41,56)(42,53)(43,54)(44,55)(45,58)(46,59)(47,60)(48,57), (1,23)(2,24)(3,21)(4,22)(5,29)(6,30)(7,31)(8,32)(9,64)(10,61)(11,62)(12,63)(13,58)(14,59)(15,60)(16,57)(17,40)(18,37)(19,38)(20,39)(25,56)(26,53)(27,54)(28,55)(33,43)(34,44)(35,41)(36,42)(45,52)(46,49)(47,50)(48,51), (1,39)(2,40)(3,37)(4,38)(5,61)(6,62)(7,63)(8,64)(9,32)(10,29)(11,30)(12,31)(13,26)(14,27)(15,28)(16,25)(17,24)(18,21)(19,22)(20,23)(33,49)(34,50)(35,51)(36,52)(41,48)(42,45)(43,46)(44,47)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28)(2,14)(3,26)(4,16)(5,34)(6,49)(7,36)(8,51)(9,41)(10,47)(11,43)(12,45)(13,37)(15,39)(17,54)(18,58)(19,56)(20,60)(21,53)(22,57)(23,55)(24,59)(25,38)(27,40)(29,44)(30,46)(31,42)(32,48)(33,62)(35,64)(50,61)(52,63) );

G=PermutationGroup([[(1,60),(2,57),(3,58),(4,59),(5,50),(6,51),(7,52),(8,49),(9,43),(10,44),(11,41),(12,42),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28),(29,47),(30,48),(31,45),(32,46),(33,64),(34,61),(35,62),(36,63),(37,53),(38,54),(39,55),(40,56)], [(1,29),(2,30),(3,31),(4,32),(5,23),(6,24),(7,21),(8,22),(9,38),(10,39),(11,40),(12,37),(13,52),(14,49),(15,50),(16,51),(17,62),(18,63),(19,64),(20,61),(25,35),(26,36),(27,33),(28,34),(41,56),(42,53),(43,54),(44,55),(45,58),(46,59),(47,60),(48,57)], [(1,23),(2,24),(3,21),(4,22),(5,29),(6,30),(7,31),(8,32),(9,64),(10,61),(11,62),(12,63),(13,58),(14,59),(15,60),(16,57),(17,40),(18,37),(19,38),(20,39),(25,56),(26,53),(27,54),(28,55),(33,43),(34,44),(35,41),(36,42),(45,52),(46,49),(47,50),(48,51)], [(1,39),(2,40),(3,37),(4,38),(5,61),(6,62),(7,63),(8,64),(9,32),(10,29),(11,30),(12,31),(13,26),(14,27),(15,28),(16,25),(17,24),(18,21),(19,22),(20,23),(33,49),(34,50),(35,51),(36,52),(41,48),(42,45),(43,46),(44,47),(53,58),(54,59),(55,60),(56,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,28),(2,14),(3,26),(4,16),(5,34),(6,49),(7,36),(8,51),(9,41),(10,47),(11,43),(12,45),(13,37),(15,39),(17,54),(18,58),(19,56),(20,60),(21,53),(22,57),(23,55),(24,59),(25,38),(27,40),(29,44),(30,46),(31,42),(32,48),(33,62),(35,64),(50,61),(52,63)]])

56 conjugacy classes

class 1 2A···2O2P···2W2X2Y2Z2AA4A···4P4Q···4AB
order12···22···222224···44···4
size11···12···244442···24···4

56 irreducible representations

dim1111111222
type++++++++
imageC1C2C2C2C2C2C4D4D4C4oD4
kernelC2xC23.23D4C2xC2.C42C23.23D4C22xC22:C4C24xC4D4xC23C22xD4C22xC4C24C23
# reps12831116888

Matrix representation of C2xC23.23D4 in GL6(F5)

400000
040000
004000
000400
000010
000001
,
400000
010000
000400
004000
000042
000001
,
100000
010000
004000
000400
000040
000004
,
100000
040000
004000
000400
000040
000004
,
100000
030000
002000
000200
000042
000001
,
100000
040000
004000
000100
000040
000041

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1] >;

C2xC23.23D4 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{23}D_4
% in TeX

G:=Group("C2xC2^3.23D4");
// GroupNames label

G:=SmallGroup(128,1019);
// by ID

G=gap.SmallGroup(128,1019);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,568,758]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d*e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<